FOREST PLANTATION DETECTION THROUGH DEEP SEMANTIC SEGMENTATION

نویسندگان

چکیده

Abstract. Forest plantations play an important role ecologically, contribute to carbon sequestration and support billions of dollars economic activity each year through sustainable forest management sector value chains. As the global demand for products services increases, marketplace is seeking more reliable data on plantations. Remote sensing technologies allied with machine learning, most recently deep learning techniques, provide valuable inventorying related valuation products. In this work, semantic segmentation U-net architecture was used detect plantation areas using Sentinel-2 CBERS-4A images different Brazil. First, models were built from area Centre-East Paraná State, then best tested in 3 new that present characteristics. The achieved promising results similar ones training set, F1-score ranging 0.9171 0.9499 Kappa values between 0.8712 0.9272, demonstrating feasibility

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semantic Segmentation with Deep Learning

We present a deep convolutional neural network approach for producing semantic segmentations. First, we generalize the architecture of the successful Alexnet network [7] to directly predict coarse segmentations. Second, we produce full resolution segmentations by re-ranking a diverse set of plausible segmentation proposals generated from a recent state of the art approach [9].

متن کامل

Deep Projective 3D Semantic Segmentation

Semantic segmentation of 3D point clouds is a challenging problem with numerous real-world applications. While deep learning has revolutionized the field of image semantic segmentation, its impact on point cloud data has been limited so far. Recent attempts, based on 3D deep learning approaches (3DCNNs), have achieved below-expected results. Such methods require voxelizations of the underlying ...

متن کامل

Towards Robust Semantic Segmentation using Deep Fusion

Robust semantic scene understanding of unstructured environments is critical for robots operating in the real world. Several inherent natural factors such as shadows, glare and snow make this problem highly challenging, especially using RGB images. In this paper, we propose the use of multispectral and multimodal images to increase robustness of segmentation in real-world outdoor environments. ...

متن کامل

Semantic Part Segmentation with Deep Learning

In this work we address the task of segmenting an object into its parts, or semantic part segmentation. We start by adapting a state-of-the-art semantic segmentation system to this task, and show that a combination of a fully-convolutional Deep CNN system coupled with Dense CRF labelling provides excellent results for a broad range of object categories. Still, this approach remains agnostic to ...

متن کامل

Semantic Instance Segmentation via Deep Metric Learning

We propose a new method for semantic instance segmentation, by first computing how likely two pixels are to belong to the same object, and then by grouping similar pixels together. Our similarity metric is based on a deep, fully convolutional embedding model. Our grouping method is based on selecting all points that are sufficiently similar to a set of “seed points’, chosen from a deep, fully c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences

سال: 2022

ISSN: ['1682-1777', '1682-1750', '2194-9034']

DOI: https://doi.org/10.5194/isprs-archives-xliii-b3-2022-77-2022